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OUTPHIT – DEEP RETROFITS MADE FASTER, CHEAPER AND MORE RELIABLE 
outPHit pairs such approaches with the rigour of Passive House principles to make deep retrofits cost-effective, 
faster and more reliable. On the basis of case studies across Europe and in collaboration with a wide variety of 
stakeholders, outPHit is addressing barriers to the uptake of high quality deep retrofits while facilitating the devel-
opment of high performance renovation systems, tools for decision making and quality assurance safeguards.  
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SUMMARY 

The outPHit project aims to support building owners and housing companies in per-
forming reliable, quicker and more cost-effective deep retrofits. One element within 
this scope is a reliable and robust assessment of building concepts with regard to 
carbon emissions and the transition to renewable energy sources. 

Often various flavours of “net-zero” concepts are discussed. Many times the defini-
tion remains fuzzy. Most suggestions relate to carbon emissions or annual balance of 
energy use and renewable energy yield of a renewable energy sources (RES) system 
on site. This approach generally has two major weaknesses:  

For one, the energy use is not capped, meaning, that energy efficiency is not directly 
stipulated. It may or may not come into play indirectly but the annual turnover is 
effectively unlimited. This neglects the fact that the renewable energy (RE) potential 
is indeed constrained by natural limitations in available land. Since the energy tran-
sition is desired for the entire society and economy energy efficiency targets are in-
dispensable to achieve the energy transition within the natural boundaries and eco-
nomic constraints. 

The other weakness relates to the two-fold temporal mismatch of abundant RES 
availability in the summer and reduced availability in the winter, due to reduced PV 
yield in this period, which is met by an increased energy demand in the winter due 
to space heating, particularly for inefficient buildings. The simple annual balance of 
e.g. PV yield and annual electricity usage is misleading as long as energy losses that 
are incurred in the processes involved to transfer electrical energy in time are not 
taken into account. 

In order to establish a robust approach to guide design choices the Passive House 
Institute has developed the Primary Energy Renewable (PER) system. This system as-
sumes the energy transition as accomplished and can thereby rate a building’s per-
formance within a 100% RES scenario by way of weighting factors for energy use sec-
tors. It makes the central assumption that electrical energy is the main primary en-
ergy available. The factors are derived from the proportions of immediate electricity 
use, required short-term storage (and its associated losses) as well as long-term, sea-
sonal storage requirements (and its associated losses) as they can be expected for 
typical energy uses such as domestic hot water preparation, household electricity, 
space heating or space cooling. 

In combination with a focus on energy efficiency such as inherent to the Passive 
House / EnerPHit schemes, a truly sustainable and robust solution can be identified, 
that will perform very well in today’s energy system while being 100 % ready for the 
all-renewable future. 
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INTRODUCTION 

The transformation of the building stock towards a sustainable scenario for the fu-
ture has many analogies to forestry: Sustainability originated there and means to 
think ahead for large periods of time and anticipate slow, but sure, developments. 
The central requirement is to plant today what is desired to be harvested two centu-
ries later. Trees take many generations to grow and, similarly, buildings are very long-
lived goods. Any changes in the building stock take place only very slowly, much in-
vestment is involved and much inertia needs to be overcome. This makes it even 
more important to design today what we would like the building stock to be in the 
desired future. 

As far as retrofits are concerned there is another important aspect. Common sense 
dictates that any building refurbished now will not be refurbished again within the 
next five to ten decades. A zero fossil carbon economy is desired approximately for 
the year 2050, which is only some 25 years ahead. Hence, all refurbishments today 
must be optimised to perform well within the desired scenario of the future as there 
will not be an opportunity to alter them again. 

In the future, the building stock shall be used sustainably. While this has some impli-
cations on building materials (see the outPHit deliverable D.4.3), the dominant factor 
is energy use. For a sustainable future, energy must be provided without carbon 
emissions and other hazardous substances. 

However, renewable energy has another analogy to agriculture: It is available only in 
low density, spread across the country. As its potential is tied to the land on which it 
is harvested and the land is a finite commodity the renewable energy potential is also 
limited. 

A discussion of different rating mechanisms of "net zero", settling on an adequate 
yardstick for the outPHit demonstration projects is required early on, in order 
to make informed and targeted design choices. A systematic disadvantage 
for apartment blocks with regard to single family homes must also be 
avoided, but is frequently implied in balancing PV yields from the available 
roof area with the gross electrical consumption. This naïve proportion is al-
ways more favourable in the case of low density structures while higher den-
sity structures (avoiding extremes such as skyscrapers) in fact offer great ad-
vantages in the use of resources of all kinds (land, heating energy, embodied 
carbon, public infrastructure, most times also energy spent on mobility, the 
viability of public transport, and more).  
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NET ZERO 

In the past ten years various concepts have been proposed to achieve sustainability 
in buildings via different “net-zero” approaches. The use of buildings will invariably 
be tied to energy use in the 21st century, so a “zero energy use” scenario is ruled out 
from the beginning. The following paragraph tries a summarising overview of the 
“net zero x” approaches and discusses the most relevant pro’s and con’s respectively. 

As a background to this discussion a brief description of the emerging future energy 
system shall be given first. Necessarily this will remain a very rough sketch and only 
a crystal ball could reveal any detail. It will, however, suffice to illustrate a few ele-
mental dispositions that will characterise the situation with high probability, as they 
are rooted in physics and climate of the earth. 

It is widely accepted that mitigating climate change requires to phase out fossil fuels 
quickly and to replace them with energy from renewable energy sources (RES). If nu-
clear energy is ruled out for its inherent catastrophic risks, nuclear weapons prolifer-
ation aspects, unclear long-term nuclear waste storage and cost any sustainable en-
ergy system of the future will thus be based on 100 % renewable energy (RE). 

The availability of biomass is very limited and also competes with agricultural pro-
duction for higher valued applications. It can only contribute a small fraction of the 
energy requirements in Europe, but has the natural benefit of being storable, which 
destines it for usage at times with low availability of other forms of renewable energy 
(dark calm in the winter). But it will also be much in demand as a chemical raw ma-
terial or base for synthetic fuels of high energy density, as are required for airplanes 
and ships, which leaves even less potential for the building sector. 

Hence, the primary energy of the future will be electricity from RES, mainly wind and 
photovoltaics (PV). Wind has slightly lower potential in the summer due to increased 
turbulence of the atmosphere at low heights above ground level. This is more than 
offset if enough PV capacity is installed (e.g. ~50/50). Combined, both sources can 
provide much power from spring to autumn. Pumped storage and batteries can be 
used to handle fluctuations on time scales of hours or days, transnational grid cou-
pling helps in levelling regional fluctuations in the first place. In the winter, however, 
the PV potential in Europe is greatly reduced. A slightly increased wind power pro-
duction cannot nearly offset this unless an uneconomic amount of wind power ca-
pacity were to be installed. The availability of suitable land limits the wind power 
capacity potential. 

As a result, a structurally decreased availability of RE meets a structurally increased 
energy demand, caused by space heating requirements, in the winter. This challenge 
can be overcome by seasonal energy storage, transferring some of the summer’s 
abundance of energy into the winter. Such seasonal energy storage can only be ac-
complished in chemical form, e.g. by electrolysis of water and storage of hydrogen 
or any derived compounds. These can then be re-converted into electricity at a later 
date, by fuel cells or thermal power plants. Waste heat from these processes can be 
useful, more heat can be generated from electrical power leveraged by heat pumps. 
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While these processes are readily available and the engineering behind them poses 
no material challenges they are characterised by a low roundtrip efficiency. Moreo-
ver, the installed capacity for power generation from seasonally stored energy carri-
ers must be designed to deliver nearly the total grid load in the case of a dark calm 
but will operate at full load only for very short times. This is a substantial economic 
challenge. 

As a result providing power at all times in the winter will require a substantially 
greater effort than in the summer or in the current situation. In a market based econ-
omy this will eventually articulate as a higher price for energy in the winter. 

The above scenario suggests three obvious demands: 

1. Use little energy in the winter: Avoid space heating demand as much as rea-
sonably possible. 

2. Use little power in the winter: Avoid spiking peak loads in order to limit the 
economically challenging backup power requirement from seasonal storage. 

3. Keep the power grid stable and to keep the grid-build-up at a manageable 
level. 

Rating concepts for the sustainability of buildings should not conflict with these de-
mands and, despite all imponderabilities regarding the future, reliably steer today’s 
design choices into the right direction. 

Now we can start our little tour of the two major net zero concepts. 

Net zero carbon 

Claim: The world is challenged by a carbon problem, not an energy problem. Let’s 
make carbon emissions the primary yardstick. Different forms of energy can be com-
bined into a single figure representation by multiplication with their respective car-
bon emission factors before summing up. 

Pro: Indeed climate change is driven mainly by carbon emissions and reducing or 
eliminating these as quickly and thoroughly as practically possible is of greatest im-
portance. 

Con: The approach will probably lead to the dangerous interpretation that substitut-
ing carbon-emitting ways of energy supply by carbon-neutral ways could lead to the 
desired goal, neglecting the limited availability of RE both spatially and temporally. 
The world does have an energy problem as well. 

Discussion: If no other robust criteria are employed the net zero carbon approach 
will violate both demands of the future energy system. It does not limit energy or 
power use at any time of the year and thus fails to provide guidance towards the 
desired goal. Net zero carbon alone is clearly insufficient. 
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Moreover, the “net” can even allow residual fossil carbon emissions combined with 
offsetting schemes, an approach that is frequently criticized as inconsequent and du-
bious. 

Zero carbon may have its merits as an additional criterion on top of any approach 
that meets both future energy system demands. 

Net zero energy 

Claim: The building produces as much or even more renewable energy as it con-
sumes. A primary energy factor for generated and consumed energy can make both 
comparable. 

Pro: Buildings occupy land and instead of using new land for RES it should be pre-
ferred to integrate RE capacity in buildings. As a regular measure it can help build the 
RES capacity the all-renewable energy system requires. 

Con: It is not sound to balance summer energy abundance with winter energy re-
quirements without taking the (seasonal) storage losses into account. These intro-
duce an additional factor greater than 1 by which the summer generation must ex-
ceed the winter demand. Further, the grid must absorb great quantities of energy in 
the summer and provide great quantities of energy and power in the winter. 

Discussion: If no other robust criteria are employed the net zero energy approach 
will violate both demands of the future energy system. The approach is at risk to 
offload its interaction with a future 100 % renewable energy system at the cost of 
the public spending on the seasonal energy storage and backup power system. More-
over, the approach favours low density forms of living that have severe disad-
vantages in terms of construction and land cost, urbanism, induced traffic, infrastruc-
ture investments etc. Factors for the rating of (non-renewable) primary energy lose 
their value as they require ever more frequent adjustments in a changing energy sys-
tem. Within a 100 % renewable energy scenario they assume the value of zero and 
lose all of their guiding value. Net zero energy alone is clearly insufficient. 

Net zero energy may have its merits as an additional criterion on top of any approach 
that meets both future energy system demands. A mechanism to avoid the prefer-
ence for low-density structures must be devised in order to not stimulate a false op-
timisation. 

100% RENEWABLE ENERGY 

100% renewable energy is what is needed for the future. Some engineering advances 
will certainly be made, but the laws of physics and chemistry will always apply. This 
defines the framework for any possible solutions towards the energy system of the 
future. It will be safe to assume existing technology and not depend on developments 
that may or may not materialise. 



 

 

 

 
7 

 

One obvious element is the limited availability of land. Current discussions on wind 
turbine installations highlight this already. Much increase can still be made, but re-
newable energy will never be boundlessly available. What is more, it is naturally sub-
ject to short-term and seasonal fluctuations. 

STORAGE REQUIREMENTS AND STORAGE LOSSES 

Depending on the time scale different storage mechanisms come into consideration. 
For short-term storage ranging from a few hours to a few days concrete examples 
exist in the (mechanical) form of pumped storage (hydro and pressurised air). As 
pumped hydro storage depends on suitable terrain some research efforts are made 
to further develop the concept using underground cavities in combination with sur-
face pools or subsea artificial cavities and sea water. Pressurised air storage would 
benefit thermodynamic optimisation if the compression heat were stored and reused 
upon expansion. Liquefied air storage is another flavour that does not depend on any 
geological conditions, but also poses the challenge of heat storage; it is very compact 
as the phase change from gaseous to liquid increases the density immensely but heat 
storage is the critical bottleneck for reasonable efficiency. The technologies in this 
field have essentially been well known for decades.  

Battery storage is only emerging as a large scale grid stabilising component but many 
field tests are being made. The electrification of the transport sector will provide an 
ample supply of aged, but still useful, battery cells for stationary use. Further, exotic 
battery technologies such as redox-flow might prove useful in this field - total cost 
will be the critical factor. Battery storage does not depend on any topographical fea-
tures and has no moving parts. It can be easily controlled by computers and reacts 
instantaneously. The technology is well known and will benefit from the determined 
research done for electric vehicles that have just seen their breakthrough. 

For both short-term storage routes, however, losses cannot be avoided. Mechanical 
friction and electric resistance convert some of the energy into low-temperature heat 
that is no longer useful for technical purposes. This happens twice, at taking in as well 
as at reconversion to electricity. A safe assumption will be a round-trip efficiency of 
70 %. As a result electricity via this path will be about one and a half times as expen-
sive as electricity directly consumed at the time of harvesting. Since a major part of 
the electricity will still be available directly, short-term storage might be factored into 
a combined costing scheme. 

Some storage capacity can also be activated in the form of heat in domestic hot water 
cylinders and building structures, and can be assumed as 95 % and 90 % efficient re-
spectively: Excess electricity may be spent to heat up these capacities (using heat 
pumps) in order to avoid electric consumption at a later time with reduced availabil-
ity of energy. 

Long-term storage of electrical energy is economically viable only if converted to a 
storable chemical energy carrier. Electrolysis of water to hydrogen suggests itself as 
the basic process, the product might be further synthesised into more convenient 
compounds. Fischer-Tropsch synthesis may produce methane and longer chain hy-
drocarbons, but requires a suitable source of (non-fossil) carbon dioxide. Enriching 
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atmospheric carbon dioxide (from ~0.04 % of the earth’s atmosphere) requires much 
energy, harvesting it from the flue gases of burning biomass might lay the ground for 
a carbon recycling value chain in the future. Methane is the main constituent of nat-
ural gas and therefore may be directly fed into the existing infrastructure for storage, 
distribution and conversion. Methanol is another derivate that adds the advantage 
of being liquid at normal conditions, but also requires carbon dioxide. A way out of 
the ligand scarcity is the synthesis of ammonia, using nitrogen that presents 78 % of 
the earth’s atmosphere and hence is very easy to obtain. Ammonia synthesis is a 
well-known, large scale industrial process (Haber-Bosch process) and ammonia may 
be stored at comparatively low pressure in liquid form, similar to liquefied petroleum 
gas (LPG) today. Direct, electrolytic ammonia synthesis from water and air is also 
possible and may offer improved efficiency in the future. Another advantage over 
methane is that ammonia has no global warming potential. The important down-
sides, however, are its toxicity and caustic/corrosive properties. 

Assuming a conversion efficiency of 57 % for the conversion of electricity into me-
thane is realistic. The re-conversion from gas into electricity in a CCTG plant may be 
modelled with an efficiency of 55 %. Electricity consumed via the seasonal storage 
therefore has an overall efficiency of only approx. 31 %. Finally, 5 % distribution 
losses must be considered for electricity transmission via the electrical grid. As a re-
sult electricity via this path will be about four times as expensive as electricity directly 
consumed at the time of harvesting, which might be beyond the limits of a combined 
costing scheme and be handed down to customers. 

This brings back the two demands of the future energy system: 

1. Use little energy in the winter.  
2. Use little power in the winter.  

Reducing the systematic winter energy supply gap by increased energy efficiency is a 
vital building block for an economically viable energy system based on 100 % RE. 
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PRIMARY ENERGY RENEWABLE 

Different application sectors for energy in buildings have different temporal charac-
teristics: Domestic hot water and plug loads will not differ very much over the course 
of the year, but heating and cooling/dehumidification are only seasonal in Europe. 
The regional climate determines the availability of renewable energy from wind and 
PV (and, to a lesser amount, the availability of hydropower) over time. It follows that 
any suitable rating system must take the temporal correlation of availability and de-
mand into account, distinctly for each application sector and tied to the relevant local 
climate conditions. This has been modelled at the Passive House Institute compre-
hensively for locations worldwide. 

 

Figure 1: Sankey diagram of a future electrical power system based on all-renewable 
input from various sources, with short-term and long-term storage processes and as-
sociated losses 

The modelled interaction of RES and energy demand in buildings yields factors 
greater than one that comprise all extra energy requirements to cover any losses in 
storage processes in order to meet the load curve of the respective sector. These 
application-specific factors that describe the incurred losses along the energy path 
from generation to storage and, finally, usage do not differ dramatically over fairly 
large areas. They can, for example, be unified for large regions and often even on a 
national level. The following table gives the Primary Energy Renewable (PER) factors 
for electricity in the outPHit partner countries. 
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PER factors for elec-
tricity in the EU 

[kWh/kWh] 

AT BG DE ES FR GR 

General electricity 1.30 1.30 1.30 1.30 1.25 1.25 

Domestic hot water 1.30 1.30 1.30 1.30 1.30 1.25 

Space heating 1.80 1.70 1.80 1.70 1.70 1.75 

Space cooling 1.10 1.10 1.10 1.10 1.05 1.25 

Dehumidification  1.15 1.10 1.15 1.10 1.25 1.70 

Table 1: Primary Energy Renewable (PER) factors for various electricity uses in the 
outPHit partner countries illustrate regional differences in Europe. 

Obviously the largest factor is always related to heating, since the systematic gap of 
available RE and space heating demand must be covered from seasonal storage pro-
cesses to a relatively large extent. Much more energy must be harvested in the sum-
mer to finally provide one unit energy for heating in the winter. For cooling the cor-
relation of production and consumption is better, as PV yields are maximal in the 
summer and can easily cover cooling demand, with minimal storage for night times 
or cloudy days. 

The PER system takes the critical effects on the grid level into account and provides 
a framework that steers today’s design choices into the right direction. Together with 
an appropriate building standard, such as EnerPHit, that brings about stringent en-
ergy efficiency targets in combination with a PER limit, an optimal combination can 
be achieved. 

Assuming the real grid to be transformed to 100 % RE over time, the buildings so 
rated will automatically also meet the zero fossil carbon emissions target which 
makes it largely dispensable on the level of an individual building. 

The concept of the PER factors to rate energy use also already points to a sensible 
zero energy rating approach: A “net zero energy” building will provide as much en-
ergy as it consumes, taking into account all the energy system losses along the way 
in the form of PER factors. 

But there was another objection: to not artificially favour low density structures. RES 
integration in buildings usually is PV panels on the roof. A large apartment block has 
much less roof are per unit living area than a bungalow. It is fair to demand to exploit 
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the PV potential of any building, but it is also fair to acknowledge the less resource 
intensive living in large structures. Therefore, it makes sense to relate the PV yield to 
the footprint of the building, regardless of the height or volume or number of apart-
ments. The footprint is intensely correlated with the available roof area for PV and 
can therefore present a readily available and sensible reference for the implemented 
PV capacity. 

 

 

Figure 2: Rating PV implementation relative to the building footprint. In both situa-
tions the same useful space is provided. They differ in the space for the energy pro-
duction, but have the same relation of energy production to building footprint, so 
the footprint-specific PER generation is identical. Assuming they have the same en-
ergy demands, their PER assessments will be the same. 

It makes little sense but brings about the risk of expensive artefacts to stipulate more 
building integrated RES than can reasonably be implemented on the roof, particularly 
in the refurbishment context. If additional potential on facades is also accessible with 
little extra effort such can be incentivised with a “plus” or “premium” rating.  
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Figure 3: PER rating of energy efficient buildings, taking RE yields into account. Both 
energy efficiency and RE harvest are optimised in their own right. The same scheme 
applies to the EnerPHit refurbishment standard used in outPHit. 

CONCLUSION 

The Passive House and EnerPHit efficiency-oriented building standards combined 
with the PER rating approach for demand and RES yield in relation to the building 
footprint overcomes the weaknesses of other net zero carbon and net zero energy 
rating schemes.  

Energy demand in the critical winter period is minimised in the first place. Also the 
peak power requirement for space heating in such buildings is minimised, due to the 
very good thermal insulation and high time constant. The demands for seasonal stor-
age capacity and for re-conversion installed power are both minimised. 

Buildings designed and rated against this framework will perform perfectly within an 
all-renewable energy system of the future and contribute to reducing the burden on 
the power grid already today.  

Fossil carbon emissions are minimised instantly as much less energy is consumed. 
With the transition of the energy system towards 100 % RES a zero carbon status will 
be achieved. 

The procedures are easy to handle by designers, simple rating factors take up existing 
schemes based on non-renewable primary energy factors. 

An adequate yardstick for the RES implementation on site is available, with reference 
made to the footprint of the building. The scheme does not incentivise, but also not 
penalise, low density forms of living. 

Newly installed RES as per the “plus” or “premium” building class requirements will 
instantly contribute to the energy transition as far as feasible on-site. 
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(click the links) 

The PER concept 

Details on the PER assessment 

Background on simulation to derive PER factors  

PHI Building Certification Guide 

 

https://passipedia.org/basics/energy_and_ecology/primary_energy_renewable_per
https://passipedia.org/certification/passive_house_categories/per
https://passipedia.org/basics/passive_house_-_assuring_a_sustainable_energy_supply/passive_house_the_next_decade
https://passivehouse.com/downloads/03_building_certification_guide.pdf

